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ABSTRACT: Hildebrand and Hansen solubility parameters are commonly used to identify suitable solvents for the dispersion or disso-

lution of a range of solutes, from small molecules to graphene. This practice is based on a number of equations, which predict the

enthalpy of mixing to be minimized when the solubility parameters of solvent and solute match. However, such equations have only

been rigorously derived for mixtures of small molecules, which interact only via dispersive forces. Herein, we derive a general expres-

sion for the enthalpy of mixing in terms of the dimensionality of the solute, where small molecules are considered zero-dimensional,

materials such as polymers or nanotubes are one-dimensional (1D) and platelets such as graphene are two-dimensional (2D). We ex-

plicitly include contributions due to dispersive, dipole–dipole, and dipole-induced dipole interactions. We find equations very similar

to those of Hildebrand and Hansen so long as the solubility parameters of the solute are defined in a manner which reflects their

dimensionality. In addition, the equations for 1D and 2D systems are equivalent to known expressions for the enthalpy of mixing of

rods and platelets, respectively, as a function of surface energy. This agreement between our expressions and those commonly used

shows that the concept of solubility parameters can be rigorously applied to extended solutes such as polymers, nanotubes, and gra-

phene. VC 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 000: 000–000, 2012
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INTRODUCTION

Mixtures of two components in the liquid phase are very im-

portant in many areas of science and technology. Such mixtures

cover a wide spectrum: from simple liquid–liquid mixtures such

as alcohol and water through to dissolved solids, for example

polymer solutions or even complex dispersions of nanomaterials

in solvents. In general, it is important to understand what gov-

erns the miscibility of liquid–liquid mixtures or the solubility of

solids in liquids. For nonelectrolytic systems, this is generally

understood via the free energy of mixing, DGMix.
1 This quantity

represents the difference in free energy between a mixture of

two components and the two components in their unmixed

form and is usually written as

DGMix ¼ DHMix � TDSMix (1)

where DHMix is the enthalpy of mixing and DSMix is the entropy

of mixing. If DGMix is negative, mixing is favorable. The entropy

of mixing is generally calculated statistically for a random mix-

ture and can be very large for mixtures of small molecules.2 In

such a situation, DHMix can be relatively large without prohibit-

ing mixing. However, for solutions of macromolecules such as

polymers in solvents, DSMix is much smaller.2 This means that

for mixing to occur, DHMix must be below a critical value,

which is relatively small. In this scenario, it is very important to

understand what determines DHMix for a given solute–solvent

combination. Such understanding would allow solvents to be

chosen to minimize DHMix and so facilitate dissolution.

It has been known for a long time that DHMix can be approxi-

mated by the Hildebrand–Scatchard equation:1–3

DHMix

VMix

� �
¼ /ð1� /Þ dT ;S � dT ;N

� �2
(2)

where DHMix=VMix is the enthalpy of mixing per volume of mix-

ture, / is the solute volume fraction, and dT ;S and dT ;N are the

Hildebrand solubility parameters of solvent (S) and solute (N).

The Hildebrand solubility parameter of a given material is gener-

ally taken as the square root of the cohesive energy density of the

material. Equation (2) predicts that the enthalpy of mixing will

be minimized and so mixing will be favored when dT ;S � dT ;N .
Thus, this expression represents a simple guide for choosing a

Additional Supporting Information may be found in the online version of this article.
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solvent for a given solute. This approach, which can be traced

back at least as far as the 1930s,4,5 has been very successful.

Today, publications such as the Polymer Handbook6 contain list-

ings of the solubility parameters of hundreds of solvents. The

ubiquity of this approach can be gauged by the fact that the use

of solubility parameters to understand complex systems such as

dispersions of nanoparticles in solvents is becoming common.7–17

In fact, it has recently been shown that graphite and a range of

other layered compounds can be exfoliated only in solvents

which have the correct solubility parameters.11,14,18

However, for such a well-known and widely used framework,

solubility parameter theory has some notable gaps. Equation (2)

was originally derived for mixtures of small molecules. There-

fore, although this expression is widely used to describe

polymer solutions, this is not strictly correct as the derivation

effectively considers monomers which are disconnected from

each other.2,3 To the authors’ knowledge, an equation analogous

to eq. (2) has not been derived specifically for polymer solu-

tions. Most current theoretical research into solubility parame-

ters in polymer physics involves assuming eq. (2) (or related

expressions, see below) to apply and then calculating solubility

parameters for different polymers using techniques such as the

group contribution approach.3

In addition, as previously mentioned, a number of articles have

described using Hildebrand (and related) solubility parameters to

describe the dispersion of both one-dimensional (1D) nanomate-

rials such as nanotubes9 and two-dimensional (2D) nanomateri-

als such as graphene14 in solvents. In these cases, eq. (2) has been

used in an entirely empirical fashion. That is, while the data were

consistent with eq. (2), there is no theoretical evidence to suggest

that eq. (2) should hold for such extended structures. Given the

usefulness of this method, it is surprising that variations of eq. (2)

have not been derived for extended solutes. It is worth noting that

equations have been reported that state the enthalpy of mixing

for dispersions of rods8 and platelets14 in solvents in terms of the

surface energies of the components. However, it is not clear how

these expressions relate to more traditional solubility parameter

equations (i.e., those based on Hildebrand parameters).

There are also other difficulties. It is known that eq. (2) works

best for systems of molecules that interact predominately

through the dispersion interaction. Where dipolar interactions

or hydrogen bonding are present, Hansen et al.19–23 have pro-

posed expressions which are similar to eq. (2) but include extra

terms to describe the additional interactions. For example, Han-

sen proposed that the enthalpy of mixing could be written as

DHMix

VMix

� /ð1� /Þ
�
dD;S � dD;N
� �2þ 1

4

�
dP;S � dP;N

�2

þ 1

4
dH ;S � dH ;N

� �2� ð3Þ

where dD , dP , and dH are the Hansen solubility parameters

describing dispersive, polar, and hydrogen bonding interactions,

respectively, and where the subscripts S and N represent solvent

and dispersed phase (solute), respectively.20 This extension of

Hildebrand’s method works extremely well and is widely used.

However, eq. (3) is empirical. The terms describing the dipole

and hydrogen bonding interactions were added by analogy with

the dispersion term and the factor of 1=4 added to provide better

agreement with experiment. Given the practical importance of

Hansen parameters, an explicit derivation of the first two terms

in eq. (3) would be of interest (it is impossible to derive such

an expression for hydrogen bonding).21 Moreover, other interac-

tions such as dipole-induced dipole effects should be

incorporated.

In this article, we use simple models to derive just this set of

equations. We use a lattice model to derive variants of eq. (2)

for both 1D and 2D solute. We then show the equivalence of

using either surface energy-based solubility parameters or Hilde-

brand parameters in these variants. Finally, we derive a variant

of eq. (3) that includes the first two terms (dispersion and

dipolar interactions) and an additional term describing dipole-

induced dipole interactions.

RESULTS AND DISCUSSION

Extending Hildebrand’s Expression for 1D and 2D Solutes

We can adapt the concept of Hildebrand solubility parameters

to apply to both 1D and 2D solutes, i.e., rods and platelets. The

simplest way to do this theoretically is to use a lattice

model.2,24,25 Such models arrange the molecules of the liquid

on a cubic lattice and consider only nearest neighbor interac-

tions. The latter approximation has been shown to work

extremely well because of the rapid fall-off of the van der Waals

intermolecular interaction with distance.26 In fact, it can be

shown that lattice models can predict properties of liquids just

as well as more sophisticated analytical techniques (see Support-

ing Information). Thus, we believe the simplicity of lattice mod-

els justifies their use here. Specifically, we have adapted the

methodology described in Ref. 2 and follow the same procedure

for both rods and platelets (a detailed derivation is given in the

Supporting Information). We use a lattice model, where all

components of the system (i.e., the solvent and either rods or

platelets) are placed on a cubic lattice. Each solvent molecule

occupies one site, whilst a rod occupies a linear array of n lat-

tice sites and a platelet occupies a square array of n � n sites.

We consider the rods or platelets as initially packed together

(i.e., before dissolution) in the form of a crystal (the rods in a

cubic close packed bundle and the platelets in a stack). The sol-

vent molecules are initially condensed in a cubic array of lattice

sites. Mixing the solute with the solvent leads to the final state,

where the solvent and solute molecules are randomly arranged

on the lattice to form a uniform mixture.

We label the nearest neighbor binding energy between adjacent

lattice sites as eS�S , e1D�1D , e2D�2D , eS�2D , and eS�1D depending

on whether the sites are occupied by solvent (S), 2D platelets

(2D), or 1D rods (1D). We define all such intersite interaction

energies as positive. We compute the enthalpy of mixing as the

sum of two terms. The first is effectively the enthalpy of

vaporization of the initial state, i.e., the sum of energies

required to separate both solvent molecules from the con-

densed phase and solutes from their parent crystal to infinite

separation. However, we note that neither the individual rods

nor platelets are broken up in this procedure. It is worth
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noting that we ignore the effect of the melting enthalpy of the

rod/platelet crystal.1 This can be done because it is known that

the effects of melting enthalpy and solubility parameters can

be separated into independent terms in equations expressing

dispersed concentration.27,28

The second term is effectively the enthalpy of condensation of

these separated molecules to the mixed state. This is computed

by summing the interaction energy of all solvent and solute

molecules with their surroundings in the mixed state. A key

part of this derivation involves the realization that for infinitely

long rods or infinitely large platelets, no solvent site can be sur-

rounded by more than four rods or two platelets (see Support-

ing Information).

This derivation is given in detail in the Supporting Information.

The enthalpy of mixing per volume of mixture for a dispersion

of rods (1D) or platelets (2D) is found to be

DHMix

VMix

� �
2D

¼ z2D

2

/ð1� /Þ
mS

eS�S þ e2D�2D � 2eS�2Dð Þ (4)

DHMix

VMix

� �
1D

¼ z1D

2

/ð1� /Þ
vS

eS�S þ e1D�1D � 2eS�1Dð Þ (5)

where z2D and z1D are the number of nearest neighbors which

platelets and rods have in a crystal, respectively (i.e., 2 and 4 in

a cubic lattice). Also, / is the volume fraction of the dispersed

phase and vS is the volume of a lattice site (taken physically as

the volume of a solvent molecule).

We note these equations are similar to the enthalpy of mixing

for small molecular solutes, where we make the approximation

that solvent and solute volumes are equal:2

DHMix

VMix

¼ z0D

2

/ð1� /Þ
vS

eS�S þ eN�N � 2eS�Nð Þ (6)

In this instance, the subscript N represents a small molecule sol-

ute and z0D is generally considered to be the number of nearest

neighbors per lattice site (i.e., 6 in a cubic lattice for both solvent

and solute). However, it is worth noting that by comparison to

the derivation of eqs. (4) and (5), it is clear that z0D actually refers

to the solute, rather than the solvent. Standard derivations

usually do not distinguish between z0D and the number of

nearest neighbours per solvent molecule, zS , simply because

zS ¼ z0D ¼ 6. However, because this work considers zero-dimen-

sional (0D), 1D, and 2D solutes, differentiation between z0D ,

z1D , z2D , and zS will be critical. By comparison of eqs. (4)–(6),

it is apparent that all the information on the dimensionality of

the solute is contained in the quantities z0D , z1D , and z2D .

Equations (4)–(6) are interesting but of limited practical use. It

would be more valuable to recast these equations in terms of

properties that are intrinsic to solvent and solute. This can be

done by using the cohesive energy density of the materials to

define solubility parameters. Although Hansen solubility param-

eters are of most practical use, we will initially work in terms of

Hildebrand solubility parameters for the sake of clarity and

simplicity. Later, we will extend this to Hansen solubility

parameters.

For the solvent, using a lattice model, we can write the cohesive

energy density as2

EC;S ¼ zS

2

eS�S

vS
¼ d2T ;S (7)

where dT,S is the Hildebrand solubility parameter of the solvent,

and zS the number of nearest neighbors a solvent molecule has

in the bulk solvent. For rods or platelets, Hildebrand parameters

have not been properly defined, which allows us to do so using

expressions for cohesive energy of the rod and platelet crystals

(see Supporting Information)

EC;2D ¼ z2D

2

e2D�2D

vS
¼ z2D

zS
d2T ;2D (8)

EC;1D ¼ z1D

2

e1D�1D

vS
¼ z1D

zS
d2T ;1D (9)

In addition, we initially make the approximation that only Lon-

don (dispersive) interactions are important. This allows us to

use the geometric mean expression1 (see Supporting Informa-

tion and also below):

eS�2D ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eS�Se2D�2D

p ¼ 2vS

zS
dT ;SdT ;2D (10)

eS�1D ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eS�Se1D�1D

p ¼ 2vS

zS
dT ;SdT ;1D (11)

We note that only zS (rather than z1D or z2D) appears in eqs.

(10) and (11) specifically because of the form of our derivation

of the Hildebrand parameters in eqs. (8) and (9).

Combining eqs. (7)–(11) with (4) and (5), respectively, gives

DHMix

V

� �
2D

¼ z2D

zS
/ð1� /Þ dT ;S � dT ;2D

� �2

¼ 1
3
/ð1� /Þ dT ;S � dT ;2D

� �2 ð12Þ
DHMix

V

� �
1D

¼ z1D

zS
/ð1� /Þ dT ;S � dT ;1D

� �2

¼ 2
3
/ð1� /Þ dT ;S � dT ;1D

� �2 ð13Þ

Again, these expressions are almost identical both to each other and

to the standard expression [i.e. eq. (2)]. We note that because these

equations contain ratios of zS , z1D , and z2D , these final equations

are independent of the type of lattice under consideration (e.g., a

cubic lattice). These ratios (i.e., 1=3 and 2=3) are the only differences

between eqs. (2), (12), and (13). Their values can be understood

intuitively as follows. To dissolve 0D molecules (assuming a cubic

lattice), all six bonds to nearest neighbors must be broken. How-

ever, for a 1D material to be dissolved, each lattice site only has

to have four bonds to nearest neighbors broken (the other two

are covalently bound to neighboring sites on the same 1D object).

This is the origin of the factor of 2=3 (4=6 ¼ 2=3). A similar argu-

ment can be applied to the platelets.

We note that these factors (i.e., 1=3 and 2=3) originate in the val-

ues of zS ¼ z0D ¼ 6, z1D ¼ 4, and z2D ¼ 2, which depend on the
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dimensionality (d) of the dispersed phase, i.e., d ¼ 0 for a small

molecule, d ¼ 1 for a rod, and d ¼ 2 for a platelet. This allows

us to write the general expression for the enthalpy of mixing of

low-dimensional nanomaterials in solvents:

DHMix

VMix

� �
d

¼ 1� d

3

� �
/ð1� /Þ dT ;S � dT ;N

� �2
(14)

where dT ;N represents the Hildebrand parameter of the dis-

persed nanomaterial of dimensionality d.

We believe that this expression will prove useful for a number of

reasons. First, it generalizes the well-known relationship between

enthalpy of mixing and Hildebrand solubility parameters. Second,

it shows that Hildebrand solubility parameter theory is appropri-

ate not just for use with systems of small molecules, but for

solutes which are larger than one lattice site. We note that the

mathematical derivation does not require either rods or plates to

be rigid. Thus, in the case of 1D solutes, this analysis is applicable

to flexible polymers. This puts the common practice of using eq.

(2) to describe solutions of polymers in solvents on a firm

theoretical footing. In addition, this work implies that Hildebrand

solubility parameters are also appropriate for more exotic solutes,

for example nanomaterials such as nanotubes or graphene.

Relationship to Surface Energy

We can use eqs. (7–9) to note that, independent of dimension-

ality, the intercell binding energy can be related to solubility pa-

rameter by

ei�i ¼ 2vS

zS
d2T ;i (15)

where i can represent solvent, 0D, 1D, or 2D material depending

on the situation. Again, we note that only zS (rather than z1D or

z2D) appears in eq. (15) specifically because of the form of our

definition of the Hildebrand parameters in eqs. (8) and (9).

Using this, we can relate the solubility parameter to the surface
energy by considering splitting the lattice into two portions along
a plane. If the split breaks n intersite bonds, then the energy cost
will be nei�i and the amount of new surface created will be

2nv
2=3
S , where the factor of 2 describes the fact that two new

surfaces are created and v
2=3
S is the surface area of one face of a

cube of volume vs. This means the surface energy is given by

ESur;i ¼ nei�i

2nv
2=3
S

¼ v
1=3
S d2T ;i
zS

(16)

an expression that is similar to the empirical relationship

reported by Koenhen and Smolders.29

Hernandez et al.14 have published an expression for the en-

thalpy of mixing per volume of platelets in a solvent to be:

DHMix

V
� 2

T2D

� ffiffiffiffiffiffiffiffiffiffiffi
ESur;S

p � ffiffiffiffiffiffiffiffiffiffiffiffiffi
ESur;2D

p �2

/ (17)

where ESur,S and ESur,2D are the total surface energies of solvent

and platelet, respectively, and T2D is the platelet thickness. If we

use eq. (16) to replace the solubility parameters in eq. (12),

remembering that z2D ¼ 2, we find

DHMix

V
� 2

v
1=3
S

� ffiffiffiffiffiffiffiffiffiffiffi
ESur;S

p � ffiffiffiffiffiffiffiffiffiffiffiffiffi
ESur;2D

p �2

/ð1� /Þ (18)

In our model, the platelets have thickness equal to one cell

width, i.e., T2D ¼ v
1=3
S . This means that in the limit of low vol-

ume fraction, as considered by Hernandez et al., eq. (17) is

identical to eq. (12). It can also be shown that Bergin’s expres-

sion for the enthalpy of mixing of rods, written in terms of sur-

face energy,8 can be found from eqs. (16) and (13). This clearly

demonstrates that surface energy-based solubility parameters are

analogous to Hildebrand parameters.

Incorporating Nondispersive Interactions

However, it is known that Hildebrand solubility parameters are

not ideal for describing the dispersion of polar materials. This is

because of the approximation described above that considers

only the dispersion interaction. To resolve this issue, Hansen20

suggested that additional solubility parameters be introduced.

These are the square roots of the dispersive, polar, and hydrogen

bonding components of the cohesive energy density of a mate-

rial and are denoted dD;N , dP;N and dH ;N , respectively.3,20,30

Hansen proposed that the enthalpy of mixing could then be

written as eq. (3). (We note that in line with the notation used

above, N can represent 0D, 1D, or 2D, depending on the nature

of the solute, i.e., small molecule, rod, or platelet.)

However, there are a number of problems with this analysis as

described in the introduction. The first is that eq. (3) was not

derived but written down by comparison with Hildebrand’s expres-

sion. Second, other important interactions such as dipole-induced

dipole effects are ignored. Finally, the factor of 4 is included only

because it gives better agreement with experimental results.

To attempt to clarify these issues, we now derive an expression

for the enthalpy of mixing from first principles, considering

London and dipolar interactions. We do not consider H-bond-

ing interactions, as simple expressions do not exist to relate the

intermolecular H-bonding energy to molecular properties.

Deriving Mixing Enthalpy from First Principles as a Function

of Dispersive and Polar Solubility Parameters

Derivation of an expression for the enthalpy of mixing within a

lattice model involves the calculation of the bracketed energetic

term in eq. (6). For simplicity, we will label this as

DE ¼ eS�S þ eN�N � 2eS�Nð Þ (19)

To calculate DE, it is necessary to calculate eS�S , eN�N , and

eS�N . We will assume that each of these interaction energies is

the sum of a dispersive and a dipolar term. Considering two

lattice sites A and B, we write the intersite interaction energy in

the general form

eA�B ¼ eD;A�B þ eP;A�B (20)

where the subscripts D and P represent dispersive and dipolar

interactions, respectively. For the dispersion interaction, the
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intersite interaction energy is proportional to the product of the

polarizabilities of the lattice sites (i.e., aA and aB, see Supporting
Information)31

eD;A�B ¼ k1aAaB (21a)

where k1 is a constant. Similarly, for two lattice sites interacting

by dipolar interactions, the energy of interaction is proportional

to the square of the product of the dipole moments associated

with the lattice sites (i.e., lA and lB, see Supporting Informa-

tion)31

eP;A�B ¼ k2l
2
Al

2
B (21b)

where k2 is a constant. In the Supporting Information, we

derive DE using these specific expressions. There is, however, a

more general method. These expressions can be thought of as

special cases of the general form:

eA�B ¼ aðxAxBÞn (21c)

where xA and xB are intrinsic parameters associated with sites

(molecules) A and B and a and n are arbitrary constants. In the

case where A and B are identical, i.e., eA�A and eB�B , we can

arrange eq. (21c) to give xA ¼ ðeA�A=aÞ1=2n and

xB ¼ ðeB�B=aÞ1=2n. Substituting these back into (21c) gives

eA�B ¼ ðeA�AeB�BÞ1=2 (22)

This is the geometric mean approximation which this argument

shows to be generally true for any intersite interactions with

energy dependence such as that given by (21c). This means, of

course, that the geometric mean approximation can be applied

to dipole–dipole interactions as well as dispersive interactions.

When considering both dispersive and dipole–dipole interac-

tions, we can then write eq. (19) as

DE ¼ eD;S�S þ eD;N�N � 2ðeD;S�SeD;N�N Þ1=2 þ eP;S�S

þeP;N�N � 2ðeP;S�SeP;N�N Þ1=2
(23)

Extending eq. (7) to represent the cohesive energy density of

the solvent, where both dispersive and dipole interactions are

present gives:

EC;S ¼ zS

2vS
eD;S�S þ eP;S�S

� � ¼ d2D;S þ d2P;S (24a)

where dD,S and dP,S are the dispersive and polar Hansen parame-

ters, respectively, of the solute. From eq. (24a), we can see that

eD;S�S ¼ 2vSd
2
D;S=zS and eP;S�S ¼ 2vSd

2
P;S=zS . By comparison

with eqs. (8) and (9), we can write a similar equation for the

solute giving

EC;N ¼ zN

2vS
eD;N�N þ eP;N�N

� � ¼ zN

zS
d2D;N þ d2P;N

� �
(24b)

Herein, dD;N and dP;N are the dispersive and polar Hansen pa-

rameters, respectively, of the solute. Also, note that zN represents

the number of van der Waals bonded neighbors per solute lat-

tice site. Thus, zN could represent z0D , z1D , or z2D depending on

the situation. Equation (24b) shows that eD;N�N ¼ 2vSd
2
D;N=zS

and eP;N�N ¼ 2vSd
2
P;N=zS . Note that zN has disappeared due to

cancellation. Substituting these expressions into eq. (23) gives

DE � 2mS
zS

�
ðdD;S � dD;N Þ2 þ ðdP;S � dP;N Þ2

�
(25)

Herein, dD,i and dP,i are Hansen’s dispersive and polar parame-

ters for material i. Converting this to the enthalpy of mixing for

a mixture of solvent and solute with dimensionality d, [i.e.,

comparing eqs. (4), (5), and (14) and using (25)] gives

DHMix

VMix

� �
d

¼ 1� d

3

� �
/ð1� /Þ

�
ðdD;S � dD;N Þ2 þ ðdP;S � dP;N Þ2

�

(26a)

It is important to note that, unlike the specific derivation pre-

sented in the Supporting Information, the general derivation

described above does not depend on the exact forms of eqs.

(21a) and (21b), but holds so long as a general energy equation

such as (21c) applies. This is an important result. Among other

things, it shows that simply applying a weighting factor to the

dipole interaction term in eq. (20) cannot result in Hansen’s

factor of 1=4.

Comparing eq. (26a) to Hansen’s expression given above [eq.

(3)], we see that the form is identical, except for the dimension-

ality term, the presence in Hansen’s equation of an empirically

obtained hydrogen-bonding term, and the factor of 1=4 in the P

and H terms. It also resembles the expressions proposed by van

Arkel,22 Blanks and Prausnitz,19 Small,21 and Chen.32

However, an extremely important distinction to make between

the derivation presented here and the latter formulae is that this

expression was derived from first principles by considering the

interactions relevant to dispersion, whereas those previously

reported in the literature were arrived at purely by comparison

with Hildebrand’s expression for the enthalpy of mixing. In

other words, our approach produces a similar result to Hansen’s

but gives it a solid theoretical basis. It is worth noting that our

model is somewhat simplistic, as it seems to assume that each

lattice site can be associated with a well-defined dipole moment,

but due to the use of eq. (21c), this is not necessarily so. As

long as the energy associated with the dipolar interaction scales

with the product of terms intrinsic to each material, eq. (26)

will be valid. This seems reasonable, even if the Keesom poten-

tial [eq. (21b)] does not hold exactly.

It is also worth emphasizing that in deriving eq. (26a), we do

not conclude that Hansen’s hydrogen-bonding term [eq. (3)] is

invalid or somewhat unnecessary. Many years of experience

have shown that when choosing solvents, the correct value of

the hydrogen-bonding Hansen parameter is necessary to ensure

solubility.20 However, the analysis presented here relies on the

ability to express the components of the cohesive energy density

in terms of parameters intrinsic to the material in question [eq.

(21c)]. This simply cannot be done for hydrogen-bonding.
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Toward Hansen’s Factor of 1=4?

An important motivating factor behind this work was to find

theoretical evidence to support the factor of 1=4 preceding the

polar term in eq. (3). This factor is wholly empirical and was

included by Hansen to improve the agreement with experimen-

tal data.20 Unfortunately, we have been unsuccessful in this goal.

As described above, it is impossible to include a weighting fac-

tor in eq. (20) that results in the required fraction. In addition,

it is impossible to introduce a weighting factor into eq. (24)

without destroying the relationship between solubility parame-

ters and cohesive energy density. However, while we have not

found a mechanism to introduce a factor of 1=4 in the appropri-

ate position in eq. (3), we can introduce some asymmetry

between the dispersive and polar terms in eq. (26).

To do this, we note that the dispersion interaction is spatially
isotropic, while the dipole–dipole interaction is directional.
This means that for any given molecule, the number of
neighbors with which it interacts via the dispersion interac-
tion may be different to the number interacting via dipole–
dipole interactions. This implies that parameter zS in eq. (25)
should really have two values, one for dispersive interactions
and one for dipole–dipole interactions. This applies equally
well to the solute such that in eqs. (4–6), the parameters z0D ,

z1D , and z2D should also have two values. For clarity, in this

section, we will introduce slightly modified notation; the

number of nearest neighbors interacting via dispersive interac-

tions will be zS;D and zN ;D for solvents and solutes, respectively.

Similarly, the number of nearest neighbors interacting via

dipole–dipole interactions will be zS;P and zN ;P for solvents and

solutes, respectively. With this in mind and rewriting the entire

calculation, we find

DHmix

V

� �
total

¼/ð1�/Þ zN ;D

zS;D
dD;N�dD;Sol
� �2þ zN ;P

zS;P
ðdP;N�dP;SolÞ2

� �

(26b)

Noting that the solute can be 0D, 1D, or 2D and all neighbors

interact via the dispersion interaction, we can divide across by

zN ;D=zS;D . Applying the methodology described above, eq. (26b)

becomes

DHmix

V

� �
total

¼ 1� d

3

� �
/ð1� /Þ dD;N � dD;Sol

� �2h

þ zN ;P

zN ;D

zS;D

zS;P

�
dP;N � dP;Sol

�2i ð26CÞ

From this equation, we see a clear asymmetry between the dis-

persive and dipole–dipole terms as expressed by the factor

zN ;PzS;D=zN ;DzS;P . In general, this factor will depend on both

solvent and solute and will usually be close to 1. It may, how-

ever, be likely that circumstances will occur where this factor

deviates significantly from 1. This equation does not explain the

inclusion of Hansen’s factor of 1=4 in all cases. However, we

believe its significance is to show that alternate mechanisms

exist leading to asymmetry between the dispersive and dipole–

dipole terms and a theoretical prediction of the factor of 1=4
found in eq. (3). We hope this will spur further theoretical

work, leading to the solution of this long-standing problem.

The Effect of Dipole-Induced Dipole Effects

Of course, this model is still quite limited; for example, it

ignores at least one potentially important interaction: the

dipole-induced dipole interaction. In this section, we will

include this interaction. However, for simplicity, we will assume

the number of nearest neighbors interacting via dispersive and

dipole interactions to be equal. Dipole-induced dipole interac-

tions may be described by an intersite interaction energy:21,31

eDID;A�B ¼ k3l
2
AaB (27)

We see that such an interaction is controlled by the permanent

dipole moment of one site and the molecular polarizability of the

other, and that the full description of such an interaction must then

include a term describing site A acting on B and site B acting on A.

Thus, adding a term of type eDID;A�B ¼ k3l2AaB þ k3l2BaA into the

expression for DE to represent the dipole-induced dipole interac-

tion, the resulting DE leads to (see Supporting Information)

DE � 2mS
zS

ðdD;A � dD;BÞ2 þ ðdP;A � dP;BÞ2



þ2AðdD;A � dD;BÞðdP;A � dP;BÞ� ð28Þ

where A ¼ k3=
ffiffiffiffiffiffiffiffiffi
k1k2

p
is essentially a combination of physical con-

stants (see Supporting Information). As before, we can use this

to express the enthalpy of mixing for a solute of dimension d:

DHMix

VMix

� �
d

¼ 1� d

3

� �
/ð1� /Þ ðdD;S � dD;N Þ2 þ ðdP;S � dP;N Þ2




þ2AðdD;S � dD;N ÞðdP;S � dP;N Þ� ð29Þ

To our knowledge, this is the most general analytical expression

of its kind yet presented.

However, it is worth noting that eq. (28) and so eq. (29) cannot

be complete. Analysis of eq. (28) shows that DE must always be

positive as long as A < 1 (see Supporting Information). It can be

shown (see Supporting Information) that A < 1 for all mole-

cules, meaning that this model predicts universally positive en-

thalpy of mixing. Yet, it has been shown experimentally that

some mixtures have a negative enthalpy of mixing.33 Because eq.

(29) cannot give negative values, such experimental results cannot

be explained by any combination of dispersive, dipole, and

dipole-induced dipole interactions. It is probable that other types

of interaction, most likely specific interactions, must be present

for the enthalpy of mixing to be negative. This suggests that

hydrogen-bonding terms such as that included in eq. (3) are crit-

ical if models such as these are to be realistic. Addition of the

hydrogen-bonding term in eq. (3) to eq. (29) will not result in

an equation that can predict negative heats of mixing. One rea-

son for this may be the empirical nature of the hydrogen-bond-

ing term in question. However, a number of authors have pro-

posed different terms for the hydrogen bonding contribution to

the enthalpy of mixing.34,35 Some such terms allow a negative

contribution to the enthalpy of mixing, which in certain circum-

stances may lead to an overall negative heat of mixing.
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There is one other interesting possibility to explain the fact that

eq. (29) does not allow negative heats of mixing. Delmas et al.36

suggested that equations such as (2) [and so (23)] do not

actually give the enthalpy of mixing but more properly the non-

combinatorial free energy of mixing. If this is the case, the

Gibbs-Helmholtz equation can be used to calculate the actual

enthalpy of mixing. This results in an expression which can be

positive or negative.

Relating the Dispersed Concentration to Enthalpy of Mixing

We can use the expressions derived above to find the dispersed

concentration of solute, using recent work that has shown that

for small molecules and rod-like solutes the maximum dispersed

volume fraction is given by:37

/N / exp � �vN
RT

@ DHMix=VMixð Þ
@/

� �
(30)

where �mN is the volume per mole of the dispersed phase.

Assuming we can model a platelet as a very low aspect ratio

rod, we can apply eq. (30) to 0D, 1D, and 2D solutes. For sim-

plicity, we will illustrate this first in the case where we consider

only dispersive and dipole–dipole interactions. Thus, inserting

eq. (26a) into eq. (30), and making the approximation of low

volume fraction (1 – / � 1), we obtain an expression for the

maximum dispersed solute volume fraction:

/N / exp � 1� d

3

� �
�mN
RT

ðdD;S � dD;N Þ2 þ ðdP;S � dP;N Þ2

 �� �

(31)

This predicts that the dispersed volume fraction will behave as a

2D Gaussian function in dD;S and dP;S space, i.e., the product of

two individual Gaussians of equal width, one a function of dD;S
and the other a function of dP;S . We illustrate this in Figure 1(A)

for a hypothetical polymer (i.e., d ¼ 1) with �mN ¼ 50 L=mol

(equivalent to a molecular weight of 50,000 g/mol assuming a

density of 1000 kg/m3), dD;N ¼ 18 MPa1/2, and dP;N ¼ 9.3

MPa1/2. This graph clearly shows the polymer concentration to

depend on dispersive and polar solubility parameters as a 2D

Figure 1. (A) Dispersed volume fraction of rods (in arbitrary units) in the case where only dispersive and dipole–dipole interactions are present

[eq. (29)]. (B) A contour plot of the surface illustrated in A. (C) A contour plot plotted from eq. (30), where dispersive, dipole–dipole, and dipole-

induced dipole interactions are present. Here, a nonphysical value of A ¼ 0.8 is used in the dipole-induced dipole term. (D) A contour plot plotted

from eq. (30) with a realistic estimate of A ¼ 0.1. Note its similarity to the case where only dispersive and dipolar interactions are considered (B). In all

four graphs, d ¼ 1, mN ¼ 50 L/mol (i.e., 50,000 g/mol assuming a density of 1000 kg/m3), dD;S ¼ 18 MPa1=2, and dP;S ¼ 9:3 MPa1=2 were used.

[Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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bell-shaped curve. The data are also plotted as a contour plot in

Figure 1(B) to illustrate the symmetry between dD;S and dP;S .

We can follow the same procedure for the case where we also

consider dipole-induced dipole interactions. Using eqs. (29) and

(30), the dispersed volume fraction is given by

/N / exp � 1� d

3

� �
�mN
RT

ðdD;S � dD;N Þ2 þ ðdP;S � dP;N Þ2

�

þ2AðdD;S � dD;N ÞðdP;S � dP;N Þ�
i

ð32Þ

At first glance, it would seem as though the last term, a product

of the two different parameters, would significantly change the

behavior compared with eq. (31). In fact, this expression simply

describes a specific case of a 2D elliptical Gaussian function, i.e., a

Gaussian broadened in one dimension, narrowed in the other,

and rotated by p/4 in the dD;S; dP;S plane. We initially thought

that this narrowing might explain Hansen’s factor of 1=4 [eq. (3)].

However, the rotation by p/4 means that the width of the func-

tion projected onto both dD;S and dP;S axes is equal so no net

asymmetry is introduced. We illustrate this by plotting the dis-

persed volume fraction for a hypothetical polymer with

�mN ¼ 50 L=mol, dD;S ¼ 18 MPa1/2, and dP;S ¼ 9.3 MPa1/2 and A

¼ 0.8 as a contour plot in Figure 1(C). Herein, the narrowing

and rotation can be clearly seen.

Realistically, we can estimate that for real molecules A � 0.1

(see Supporting Information), suggesting the narrowing is very

small. We can check this by replotting eq. (32) for A ¼ 0.1 in

Figure 1(D). The observed narrowing is so small that the result-

ant contour plot is virtually indistinguishable from that in Fig-

ure 1(B), where the dipole-induced dipole interaction was not

included. This suggested that eq. (29), although strictly speaking

more correct, is not necessarily more accurate. This means that

for any normal circumstances, eq. (26a) can be used to repre-

sent the enthalpy of mixing.

Finally, we note that the inclusion of the dimensionality factor

(1 – d/3) in eqs. (31) and (32) has one important effect. For

example, for 2D solutes, (1 – d/3) ¼ 1/3. Inclusion of this fac-

tor means that the full width at half maximum of the Gaussian

peaks shown in Figure 1 will be a factor of
ffiffiffi
3

p � 1:73 larger

than that which would be expected without taking account of

dimensionality (a factor of 1.22 for 1D solutes). This may partly

explain the fact that experimental studies have shown such

curves to be �3 times broader than expected.18,37

CONCLUSIONS

By considering separately the cases of both rod-like and planar

solutes, we have derived a general expression for the enthalpy of

mixing of solutes of dimensionality d (where d ¼ 0, 1, or 2).

When d ¼ 0, the expression reverts to the well-known Hilde-

brand–Scatchard expression. For d ¼ 1 and 2, the expression dif-

fers from the Hildebrand–Scatchard expression only by a numeri-

cal constant, which depends on the solute dimensionality. Such an

expression is applicable to solutes such as polymers or materials

such as carbon nanotubes or graphene.

Second, we have demonstrated that the enthalpy of mixing so

derived may be equivalently written in terms of either Hilde-

brand parameters or surface energy-based solubility parameters.

Finally, by considering the equations governing dipole–dipole,

induced dipole-induced dipole, and dipole-induced dipole inter-

actions, we have derived an expression for the enthalpy of mixing

for a solute of dimensionality, d, that matches reasonably to Han-

sen’s empirical expression but is considerably more general:

DHMix

VMix

� �
d

¼ 1� d

3

� �
/ð1� /Þ ðdD;S � dD;N Þ2 þ ðdP;S � dP;N Þ2




þ2AðdD;S � dD;N ÞðdP;S � dP;N Þ
�

We can use this to show that solute concentration will behave

as a 2D Gaussian, which is the product of Gaussian curves in

dD;S and dP;S , respectively. In practice, however, A is so small

that virtually identical results are found without the need to

include the dipole-induced dipole term.

ACKNOWLEDGMENTS

The authors thank Science Foundation Ireland for financial sup-

port through the Principal Investigator scheme, grant number 07/

IN.1/I1772. They also thank Prof. Steven Abbott for useful

discussions.

REFERENCES

1. Hildebrand, J. H.; Prausnitz, J. M.; Scott, R. L. Regular and

Related Solutions; Van Nostrand Reinhold Company: New

York, 1970.

2. Rubinstein, M.; Colby, R. H. Polymer Physics; Oxford Uni-

versity Press: Oxford, 2003.

3. Miller-Chou, B. A.; Koenig, J. L. Progr. Polym. Sci. 2003, 28,

1223.

4. Hildebrand, J. H.; Wood, S. E. Solubility of Non-Electro-

lytes; Reinhold: New York, 1936.

5. Scatchard, G. Chem. Rev. 1931, 8, 321.

6. Brandrup, J.; Immergut, E. H.; Grulke, E. A.; Abe, A.; Bloch,

D. R., Eds. Polymer Handbook; Wiley: Chichester, 2005.

7. Amiran, J.; Nicolosi, V.; Bergin, S. D.; Khan, U.; Lyons, P.

E.; Coleman, J. N. J. Phys. Chem. C 2008, 112, 3519.

8. Bergin, S. D.; Nicolosi, V.; Streich, P. V.; Giordani, S.; Sun,

Z. Y.; Windle, A. H.; Ryan, P.; Niraj, N. P. P.; Wang, Z. T.

T.; Carpenter, L.; Blau, W. J.; Boland, J. J.; Hamilton, J. P.;

Coleman, J. N. Adv. Mater. 2008, 20, 1876.

9. Bergin, S. D.; Sun, Z. Y.; Rickard, D.; Streich, P. V.; Hamil-

ton, J. P.; Coleman, J. N. ACS Nano. 2009, 3, 2340.

10. Coleman, J. N. Adv. Funct. Mater. 2009, 19, 3680.

11. Coleman, J. N.; Lotya, M.; O’Neill, A.; Bergin, S. D.; King,

P. J.; Khan, U.; Young, K.; Gaucher, A.; De, S.; Smith, R. J.;

Shvets, I. V.; Arora, S. K.; Stanton, G.; Kim, H. Y.; Lee, K.;

Kim, G. T.; Duesberg, G. S.; Hallam, T.; Boland, J. J.; Wang,

J. J.; Donegan, J. F.; Grunlan, J. C.; Moriarty, G.; Shmeliov,

A.; Nicholls, R. J.; Perkins, J. M.; Grieveson, E. M.;

ARTICLE

8 J. APPL. POLYM. SCI. 2012, DOI: 10.1002/APP.38051 WILEYONLINELIBRARY.COM/APP



Theuwissen, K.; McComb, D. W.; Nellist, P. D.; Nicolosi, V.

Science 2011, 331, 568.

12. Ham, H. T.; Choi, Y. S.; Chung, I. J. J. Colloid Interface Sci.

2005, 286, 216.

13. Hernandez, Y.; Lotya, M.; Rickard, D.; Bergin, S. D.; Cole-

man, J. N. Langmuir 2010, 26, 3208.

14. Hernandez, Y.; Nicolosi, V.; Lotya, M.; Blighe, F. M.; Sun,
Z. Y.; De, S.; McGovern, I. T.; Holland, B.; Byrne, M.;
Gun’ko, Y. K.; Boland, J. J.; Niraj, P.; Duesberg, G.; Krishna-
murthy, S.; Goodhue, R.; Hutchison, J.; Scardaci, V.; Ferrari,
A. C.; Coleman, J. N. Nat. Nanotechnol. 2008, 3, 563.

15. Detriche, S.; Zorzini, G.; Colomer, J. F.; Fonseca, A.; Nagy,

J. B. J. Nanosci. Nanotechnol. 2007, 8, 6082.

16. Cataldo, F. Fullerenes Nanotubes Carbon Nanostruct. 2009, 17, 79.

17. Ruoff, R. S.; Tse, D. S.; Malhotra, R.; Lorents, D. C. J. Phys.

Chem. 1993, 97, 3379.

18. Cunningham, G.; Lotya, M.; Cucinotta, C. S.; Sanvito, S.;
Bergin, S. D.; Menzel, R.; Shaffer, M. S. P.; Coleman, J. N.
ACS Nano. 2012, 6, 3468.

19. Blanks, R. F.; Prausnitz, J. M. Ind. Eng. Chem. Fund. 1964,

3, 1.

20. Hansen, C. M. Hansen Solubility Parameters—A User’s

Handbook; CRC Press: Boca Raton, FL, 2007.

21. Small, P. A. J. Appl. Chem. 1953, 3, 71.

22. van Arkel, A. E. Trans. Faraday Soc. 1946, 42B, 81.

23. Hansen, C. M. Prog. Org. Coat. 2004, 51, 77.

24. Heitler, W. Ann. der Phys. 1926, 385, 629.

25. Hildebrand, J. H.; Salstrom, E. J. J. Am. Chem. Soc. 1932,

54, 4257.

26. Hildebrand, J. H.; Wood, S. E. J. Chem. Phys. 1933, 1, 817.

27. Ruelle, P.; Buchmann, M.; Namtran, H.; Kesselring, U. W.

Pharm. Res. 1992, 9, 788.

28. Ruelle, P.; Reymermet, C.; Buchmann, M.; Ho, N. T.; Kes-

selring, U. W.; Huyskens, P. L. Pharm. Res. 1991, 8, 840.

29. Koenhen, D. M.; Smolders, C. A. J. Appl. Polym. Sci. 1975,

19, 1163.

30. Hansen, C. M.; Skaarup, K. J. Paint Technol. 1967, 39, 511.

31. Israelachvili, J. Intermolecular and Surface Forces; Academic

Press: San Diego, 1991.

32. Chen, S. A. J. Appl. Polym. Sci. 1971, 15, 1247.

33. Barton, A. F. M. CRC Handbook of Solubility Parameters

and other Cohesion Parameters; CRC Press Inc.: Boca

Raton, 1983.

34. Barton, A. F. M. Chem. Rev. 1975, 75, 731.

35. Panayiotou, C. Phys. Chem. Chem. Phys. 2012, 14, 3882.

36. Delmas, G.; Somcynsky, T.; Patterson, D. J. Polym. Sci.

1962, 57, 79.

37. Hughes, J. M.; Aherne, D.; Bergin, S. D.; Streich, P. V.;

Hamilton, J. P.; Coleman, J. N. Nanotechnology, submitted.

ARTICLE

WWW.MATERIALSVIEWS.COM WILEYONLINELIBRARY.COM/APP J. APPL. POLYM. SCI. 2012, DOI: 10.1002/APP.38051 9


